ANALOG DEVICES

Preliminary Technical Data

FEATURES

$\begin{array}{ll}\text { Resolution: } & \text { AD7798: 16-Bit } \\ & \text { AD7799: 24-Bit }\end{array}$
Three Differential Analog Inputs
Low Noise Programmable Gain Amp
RMS noise: $\mathbf{8 0} \mathbf{n V}$ (Gain = 64) at $\mathbf{1 6 . 6 ~ H z ~ u p d a t e ~ r a t e ~ (A D 7 7 9 8) ~}$
65 nV (Gain = 64) at 16.6 Hz update rate (AD7799)
30 nV (Gain = 64) at 4 Hz update rate (AD7799)

Update Rate: 4 Hz to 500 Hz
 Power

Supply: 2.7 V to 5.25 V operation
Normal: $330 \mu \mathrm{~A}$ typ (AD7798)
$400 \mu \mathrm{~A}$ typ (AD7799)
Power-down: $1 \mu \mathrm{~A}$ max
Simultaneous $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ Rejection
Two Programmable Digital Outputs
Internal Clock Oscillator
Reference Detect
100 nA Burnout Currents
Low Side Power Switch
Independent Interface Power Supply
16-Lead TSSOP

INTERFACE

3-wire serial
SPI ${ }^{\oplus}$, QSPI ${ }^{\text {m }}$, MICROWIRE $^{\text {rm }}$, and DSP compatible
Schmitt trigger on SCLK

APPLICATIONS

Pressure measurement

Weigh scales

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The AD7798/AD7799 is a low power, complete analog front end for low frequency measurement applications. The device contains a low noise 24-bit (AD7799)/ 16-bit (AD7798) $\sum-\Delta$ ADC with three differential inputs. The on-chip low noise instrumentation amplifier means that signals of small amplitude can be interfaced directly to the ADC. With a gain setting of 64 , the rms noise is 80 nV for AD7798 and 65 nV for the AD7799 at 16.6 Hz .
The device contains a low side power switch which is useful in bridge applications. The switch allows the bridge to be disconnected from the power supply when conversions are not being performed and this will minimise power consumption. The device also has 100 nA burnout currents. These currents are used to detect if sensors connected to the analog inputs are burnt out. Other on-chip features include an internal clock so the user does not have to supply a clock to the device. This reduces the component count in a system and provides board space savings. The update rate is programmable on the AD7798/99. It can be varied from 4 Hz to 500 Hz .
The part operates with a single power supply from 2.7 V to 5.25 V. It consumes a current of 380 uA maximum for the AD7798 and 450 uA maximum for the AD7799. The AD7799/AD7798 is housed in a 16-lead TSSOP package.

Rev. PrD.
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

AD7799/AD7798—Specifications

\qquad 3
Timing Characteristics 6
Absolute Maximum Ratings 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 11
On-chip Registers 12
Communications Register (RS2, RS1, RS0 $=0,0,0$) 12
Status Register (RS2, RS1, RS0 $=0,0,0$; Power-on/Reset $=$ 0x88) 13
Mode Register (RS2, RS1, RS0 $=0,0,1$; Power-on/Reset $=$ 0x000A). 13
Configuration Register (rs2, RS1, RS0 $=0,1,0$; Power-on/Reset $=0 \times 0710$)15
Data Register (RS2, RS1, RS0 $=0,1,1$; Power-on/Reset $=$ 0x0000 (AD7798)/ 0x000000 (AD7799)) 16
ID Register (RS2, RS1, RS0 $=1,0,0$; Power-on/Reset $=0 \times x 8$ (AD7798)/ 0xX9 (AD7799)) 16
OFFSET Register (RS2, RS1, RS0 $=1,1,0$; Power-on/Reset $=$ 0x8000 (AD7798)/0x800000 (AD7799)) 17
FULLSCALE Register (RS2, RS1, RS0 = 1, 1, 1 ; Power-on/Reset $=0 \times 5 \mathrm{XXX}($ AD7798 $) / 0 \mathrm{x} 5 \mathrm{XXX} 000$ (AD7799)) 17
TYPICAL APPLICATION 17

REVISION HISTORY

Prelim D, June 2004: Initial Version

AD7799/AD7798—SPECIFICATIONS ${ }^{1}$

Table 1. $\left(\mathrm{AV}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to $5.25 \mathrm{~V} ; \mathrm{DV}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$; $\operatorname{REFIN}(+)=2.5 \mathrm{~V}$; REFIN $(-)=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

Parameter	AD7798/AD7799B	Unit	Test Conditions/Comments
ADC CHANNEL SPECIFICATION Output Update Rate	$\begin{aligned} & 4 \\ & 500 \\ & \hline \end{aligned}$	Hz min nom Hz max nom	
ADC CHANNEL No Missing Codes ${ }^{2}$ Resolution Output Noise and Update Rates Integral Nonlinearity Offset Error ${ }^{3}$ Offset Error Drift vs. Temperature ${ }^{4}$ Full-Scale Error ${ }^{5}$ Gain Drift vs. Temperature ${ }^{4}$ Power Supply Rejection	24 16 16 19 16 18.5 See Tables in ADC Description ± 15 ± 25 ± 3 ± 10 ± 10 ± 0.5 ± 3 90	Bits min Bits min Bits p-p Bits $p-p$ Bits $p-p$ Bits $\mathrm{p}-\mathrm{p}$ ppm of FSR max ppm of FSR max $\mu \mathrm{V}$ typ $n V /{ }^{\circ} \mathrm{C}$ typ $\mu \mathrm{V}$ typ ppm $/{ }^{\circ} \mathrm{C}$ typ ppm $/{ }^{\circ} \mathrm{C}$ typ dB min	AD7799, $\mathrm{f}_{\mathrm{ADC}} \leq 125 \mathrm{~Hz}$ AD7798 Gain $=128,16.6 \mathrm{~Hz}$ Update Rate Gain $=1,16.6 \mathrm{~Hz}$ Update Rate, AD7799 Gain $=1,16.6 \mathrm{~Hz}$ Update Rate, AD7798 Gain $=64,4 \mathrm{~Hz}$ Update Rate, AD7799 3.5 ppm typ, Gain 1 to 32 Gain $=64$ or 128 $\begin{aligned} & \text { Gain }=1,2 \\ & \text { Gain }=4 \text { to } 128 \\ & 100 \mathrm{~dB} \text { typ, AIN }=50 \% \text { of full scale } \end{aligned}$
ANALOG INPUTS Differential Input Voltage Ranges Absolute AIN Voltage Limits ${ }^{2}$ Unbuffered Mode Buffered Mode In-Amp Enabled	\pm REFIN/Gain $\begin{aligned} & \mathrm{GND}+30 \mathrm{mV} \\ & \mathrm{AV} \text { DD }-30 \mathrm{mV} \\ & \mathrm{GND}+100 \mathrm{mV} \\ & \mathrm{AV}-100 \mathrm{mV} \\ & \mathrm{GND}+300 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{DD}}-1.2 \end{aligned}$	V nom \checkmark max V min V min V max V min \checkmark max	$\begin{aligned} & \text { REFIN }=\text { REFIN(+) }- \text { REFIN(-), Gain }=1 \text { to } 128 \\ & \text { Gain }=1 \text { or } 2 \\ & \text { Gain }=1 \text { or } 2 \\ & \text { Gain }=4 \text { to } 128 \end{aligned}$
Common Mode Voltage In-Amp Enabled Analog Input Current Buffered Mode or In-Amp Enabled Average Input Current Average Input Current Drift Unbuffered Mode Average Input Current Average Input Current Drift Normal Mode Rejection ${ }^{2}$ @ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ @ 50 Hz @ 60 Hz Common Mode Rejection @DC @ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	$\begin{aligned} & 0.5 \\ & \\ & \pm 200 \\ & \pm 1 \\ & \pm 2 \\ & \\ & \pm 400 \\ & \pm 50 \\ & \\ & 70 \\ & 84 \\ & 90 \\ & 90 \\ & 100 \end{aligned}$	V min pA max nA max $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ nA/V typ pA $/$ / $/{ }^{\circ} \mathrm{C}$ typ dB min $d B$ min $d B$ min $d B$ min $d B$ min	Gain $=4$ to 128 AIN1(+) - AIN1(-), AIN2(+) - AIN2(-) only. AIN3(+) - AIN3(-). Gain = 1 or 2 Input current varies with input voltage. 73 dB typ, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1010^{6}$ 90 dB typ, $50 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1001^{6}$ 90 dB typ, $60 \pm 1 \mathrm{~Hz}, \mathrm{FS}[3: 0]=1000^{6}$ $\mathrm{AIN}=50 \%$ of FS 80 dB typ, $\mathrm{FS}[3: 0]=1010^{6}$ $50 \pm 1 \mathrm{~Hz}\left(\mathrm{FS}[3: 0]=1001^{6}\right), 60 \pm 1 \mathrm{~Hz}(\mathrm{FS}[3: 0]=$ 10006)

\begin{tabular}{|c|c|c|c|}
\hline Parameter \& AD7798/AD7799B \& Unit \& Test Conditions/Comments \\
\hline \begin{tabular}{l}
REFERENCE INPUT \\
REFIN Voltage \\
Reference Voltage Range \\
Absolute REFIN Voltage Limits \\
Average reference Input Current \\
Average Reference Input Current Drift \\
Normal Mode Rejection \\
Common Mode Rejection \\
Reference Detect
\end{tabular} \& \[
\begin{aligned}
\& 2.5 \\
\& 0.1 \\
\& \mathrm{AV} \text { DD } \\
\& \mathrm{GND}-30 \mathrm{mV} \\
\& \mathrm{AV} \text { DD }+30 \mathrm{mV} \\
\& 400 \\
\& \pm 0.03 \\
\& \text { See ANALOG INPUTS } \\
\& \text { See ANALOG INPUTS } \\
\& 0.3 \\
\& 0.65
\end{aligned}
\] \& \begin{tabular}{l}
V nom \\
\(V\) min \\
V max \\
\(V\) min \\
V max \\
nA/V typ \\
nA/V/ \({ }^{\circ} \mathrm{C}\) typ \\
\(V\) min \\
V max
\end{tabular} \& \begin{tabular}{l}
\[
\operatorname{REFIN}=\operatorname{REFIN}(+)-\operatorname{REFIN}(-)
\] \\
NOREF bit Inactive if VREF \(<0.3 \mathrm{~V}\) \\
NOREF bit Active if VREF \(>0.65 \mathrm{~V}\)
\end{tabular} \\
\hline LOW SIDE POWER SWITCH Ron Allowable Current \& \[
\begin{aligned}
\& 5 \\
\& 7 \\
\& 20
\end{aligned}
\] \& \begin{tabular}{l}
\(\Omega\) max \\
\(\Omega\) max \\
mA max
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{AV} \mathrm{VD}_{\mathrm{DD}}=5 \mathrm{~V} \\
\& \mathrm{AV} \mathrm{DD}=3 \mathrm{~V}
\end{aligned}
\] \\
Continuous Current
\end{tabular} \\
\hline INTERNAL CLOCK Drift \& \[
\begin{aligned}
\& 64 \pm 2 \% \\
\& 0.01
\end{aligned}
\] \& KHz nom \%/ \({ }^{\circ} \mathrm{C}\) typ \& \\
\hline \begin{tabular}{l}
LOGIC INPUTS \\
All Inputs Except SCLK and DIN \\
VINL, Input Low Voltage \\
\(\mathrm{V}_{\mathbf{I N H}}\), Input High Voltage SCLK and DIN Only (SchmittTriggered Input)
\[
\begin{aligned}
\& \mathrm{V}_{T}(+) \\
\& \mathrm{V}_{T}(-) \\
\& \mathrm{V}_{T}(+)-\mathrm{V}_{T}(-) \\
\& \mathrm{V}_{T}(+) \\
\& \mathrm{V}_{T}(-) \\
\& \mathrm{V}_{T}(+)-\mathrm{V}_{\mathrm{T}}(-)
\end{aligned}
\] \\
Input Currents \\
Input Capacitance
\end{tabular} \& 0.8
0.4
2.0

$1.4 / 2$
$0.8 / 1.4$
$0.3 / 0.85$
$0.9 / 2$
$0.4 / 1.1$
$0.3 / 0.85$
± 1

10 \& | \checkmark max |
| :--- |
| V max |
| V min |
| V min/V max |
| $V \min / V \max$ |
| V min/V max |
| $\mu \mathrm{A}$ max |
| pF typ | \&

\hline | LOGIC OUTPUTS |
| :--- |
| Vон, Output High Voltage |
| Vol, Output Low Voltage |
| Vон, Output High Voltage |
| Vol, Output Low Voltage |
| Floating-State Leakage Current Floating-State Output Capacitance Data Output Coding | \& \[

$$
\begin{aligned}
& \text { DV } V_{D D}-0.6 \\
& 0.4 \\
& 4 \\
& 0.4 \\
& \\
& \pm 1 \\
& 10 \\
& \text { Offset Binary }
\end{aligned}
$$

\] \& | V min |
| :--- |
| \vee max |
| V min |
| \checkmark max |
| $\mu \mathrm{A}$ max pF typ | \& \[

$$
\begin{aligned}
& D V_{D D}=3 \mathrm{~V}, I_{\text {SOURCE }}=100 \mu \mathrm{~A} \\
& D V_{D D}=3 \mathrm{~V}, I_{\text {IIIK }}=100 \mu \mathrm{~A} \\
& D V_{D D}=5 \mathrm{~V}, I_{\text {SOURCE }}=200 \mu \mathrm{~A} \\
& D V_{D D}=5 \mathrm{~V}, I_{\text {SIIN }}=1.6 \mathrm{~mA}
\end{aligned}
$$
\]

\hline | DIGITAL OUTPUTS |
| :--- |
| P1 and P2 |
| V $_{\text {он, }}$ Output High Voltage ${ }^{2}$ |
| Vol, Output Low Voltage |
| V $_{\text {он, Output High Voltage }}{ }^{2}$ |
| Vol, Output Low Voltage | \& \[

$$
\begin{aligned}
& \mathrm{AV} \mathrm{~V}_{\mathrm{DD}}-0.6 \\
& 0.4 \\
& 4 \\
& 0.4
\end{aligned}
$$

\] \& | V min |
| :--- |
| \checkmark max |
| V min |
| $V_{\text {max }}$ | \& \[

$$
\begin{aligned}
& A V_{D D}=3 \mathrm{~V}, I_{\text {SOURCE }}=100 \mu \mathrm{~A} \\
& A V_{D D}=3 \mathrm{~V}, I_{\text {IINK }}=100 \mu \mathrm{~A} \\
& A V_{D D}=5 \mathrm{~V}, I_{\text {SOURCE }}=200 \mu \mathrm{~A} \\
& A V_{D D}=5 \mathrm{~V}, I_{\text {SIINK }}=800 \mu \mathrm{~A}
\end{aligned}
$$
\]

\hline
\end{tabular}

Parameter	AD7798/AD7799B	Unit	Test Conditions/Comments
SYSTEM CALIBRATION ${ }^{2}$ Full-Scale Calibration Limit Zero-Scale Calibration Limit Input Span	$\begin{aligned} & 1.05 \times \text { FS } \\ & -1.05 \times \text { FS } \\ & 0.8 \times \mathrm{FS} \\ & 2.1 \times \mathrm{FS} \end{aligned}$	\checkmark max V min V min \checkmark max	
POWER REQUIREMENTS7 Power Supply Voltage $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{GND} \\ & \mathrm{IOV} V_{D D}-\mathrm{GND} \end{aligned}$ Power Supply Currents IdD Current IdD (Power-Down Mode)	$\begin{aligned} & 2.7 / 5.25 \\ & 2.7 / 5.25 \\ & 150 \\ & 175 \\ & 380 \\ & 450 \\ & 1 \end{aligned}$	V min/max V min/max $\mu \mathrm{A}$ max	$125 \mu \mathrm{~A}$ typ, Unbuffered Mode 150μ A typ, Buffered Mode, In-Amp Bypassed $330 \mu \mathrm{~A}$ typ, In-Amp used (AD7798) $400 \mu \mathrm{~A}$ typ, IN-AMP used (AD7799)

[^0]
TIMING CHARACTERISTICS ${ }^{8,9}$

Table 2. $\left(\mathrm{AV}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to $5.25 \mathrm{~V} ; \mathrm{DV}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.25 ; \mathrm{GND}=0 \mathrm{~V}$, Input Logic $0=0 \mathrm{~V}$, Input Logic $1=\mathrm{DV}_{\mathrm{DD}}$, unless otherwise noted.)

Parameter	Limit at $\mathbf{T M I N}_{\text {m }} \mathbf{T}_{\text {max }}$ (B Version)	Unit	Conditions/Comments
t_{3}	100	ns min	SCLK High Pulsewidth
t_{4}	100	ns min	SCLK Low Pulsewidth
Read Operation			
t_{1}	0	ns min	$\overline{\mathrm{CS}}$ Falling Edge to DOUT/ $\overline{\mathrm{RDY}}$ Active Time
	60	ns max	DV $\mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$D V_{D D}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{2}{ }^{10}$	0	ns min	SCLK Active Edge to Data Valid Delay ${ }^{11}$
	60	ns max	DV $\mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$D V_{\text {DD }}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{5}{ }^{12,13}$	10	ns min	Bus Relinquish Time after $\overline{\mathrm{CS}}$ Inactive Edge
	80	ns max	
t_{6}	100	ns max	SCLK Inactive Edge to $\overline{C S}$ Inactive Edge
t_{7}	10	ns min	SCLK Inactive Edge to DOUT/ $\overline{\text { RDY }}$ High
Write Operation			
t_{8}	0	ns min	$\overline{\text { CS }}$ Falling Edge to SCLK Active Edge Setup Time
t9	30	ns min	Data Valid to SCLK Edge Setup Time
t_{10}	25	ns min	Data Valid to SCLK Edge Hold Time
t_{11}	0	ns min	$\overline{\text { CS }}$ Rising Edge to SCLK Edge Hold Time

${ }^{8}$ Sample tested during initial release to ensure compliance. All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of 1.6 V .
${ }^{9}$ See Figure 3 and Figure 4.
${ }^{10}$ These numbers are measured with the load circuit of Figure 2 and defined as the time required for the output to cross the Vol or $V_{\text {or }}$ limits.
${ }^{11}$ SCLK active edge is falling edge of SCLK.
${ }^{12}$ These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit of Figure 2 . The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, as such, are independent of external bus loading capacitances.
${ }^{13} \overline{\mathrm{RDY}}$ returns high after a read of the ADC. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while $\overline{\mathrm{RDY}}$ is high, although care should be taken to ensure that subsequent reads do not occur close to the next output update. In continuous read mode, the digital word can be read only once.

Figure 2. Load Circuit for Timing Characterization

Figure 3. Read Cycle Timing Diagram

Figure 4. Write Cycle Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 3. $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Parameter	Rating
AV ${ }_{\text {DD }}$ to GND	-0.3 V to +7V
DV ${ }_{\text {D }}$ to GND	-0.3 V to +7V
Analog Input Voltage to GND	-0.3 V to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Reference Input Voltage to GND	-0.3 V to $\mathrm{AV} \mathrm{DD}^{+0.3 \mathrm{~V}}$
Digital Input Voltage to GND	-0.3 V to $\mathrm{DV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Output Voltage to GND	-0.3 V to $\mathrm{DV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
AIN/digital Input Current	10 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP	
θ_{JA} Thermal Impedance	$97.9^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jc} Thermal Impedance	$14^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5．Pin Configuration
Table 4．Pin Function Descriptions

Pin No.	Mnemonic	Function
1	SCLK	Serial Clock Input for Data Transfers to and from the ADC．The SCLK has a Schmitt－triggered input，making the interface suitable for opto－isolated applications．The serial clock can be continuous with all data transmitted in a continuous train of pulses．Alternatively，it can be a noncontinuous clock with the information being transmitted to or from the ADC in smaller batches of data．
2	$\overline{C S}$	Chip Select Input．This is an active low logic input used to select the ADC．$\overline{C S}$ can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communi－ cating with the device．$\overline{C S}$ can be hardwired low，allowing the ADC to operate in 3－wire mode with SCLK， DIN，and DOUT used to interface with the device．
3	AIN3（＋）／P1	Analog Input／Digital Output pin．AIN3（＋）is the positive terminal of the differential analog input pair AIN3（＋）／AIN3（－）．Alternatively，this pin can function as a general purpose output bit referenced between $A V_{D D}$ and GND
4	AIN3（－）／P2	Analog Input／Digital Output pin．AIN3（－）is the negative terminal of the differential analog input pair AIN3（＋）／AIN3（－）．Alternatively，this pin can function as a general purpose output bit referenced between $A V_{D D}$ and GND
5	AIN1（＋）	Analog Input．AIN1（＋）is the positive terminal of the differential analog input pair AIN1（＋）／AIN1（－）．
6	AIN1（－）	Analog Input．AIN1（－）is the negative terminal of the differential analog input pair AIN1（＋）／AIN1（－）．
7	AIN2（＋）	Analog Input．AIN2（＋）is the positive terminal of the differential analog input pair AIN2（＋）／AIN2（－）．
8	AIN2（－）	Analog Input．AIN2（－）is the negative terminal of the differential analog input pair AIN2（＋）／AIN2（－）．
9	REFIN（＋）	Positive Reference Input．REFIN（＋）can lie anywhere between $\mathrm{AV}_{\mathrm{DD}}$ and GND＋ 0.1 V ． The nominal reference voltage（ $\operatorname{REFIN}(+)-\operatorname{REFIN}(-))$ is 2.5 V ，but the part functions with a reference from 0.1 V to AV DD．
10	REFIN（－）	Negative Reference Input．This reference input can lie anywhere between GND and $A V_{D D}-0.1 \mathrm{~V}$ ．
11	PSW	Low Side Power Switch to GND．
12	GND	Ground Reference Point．
13	$\mathrm{AV}_{\mathrm{DD}}$	Supply Voltage，2．7 V to 5．25 V．
14	DV ${ }_{\text {D }}$	Serial Interface Supply voltage， 2.7 V to 5 V ． $\mathrm{DV}_{\mathrm{DD}}$ is independent of $\mathrm{AV}_{\mathrm{DD}}$ ，therefore the serial interface can be operated at 3 V with V_{DD} at 5 V or vice versa．
15	DOUT／$\overline{\mathrm{RDY}}$	Serial Data Output／Data Ready Output．DOUT／／̄DY serves a dual purpose ．It functions as a serial data output pin to access the output shift register of the ADC．The output shift register can contain data from any of the on－chip data or control registers．In addition，DOUT $/ \overline{\mathrm{RDY}}$ operates as a data ready pin， going low to indicate the completion of a conversion．If the data is not read after the conversion，the pin will go high before the next update occurs． The DOUT／$\overline{\mathrm{RDY}}$ falling edge can be used as an interrupt to a processor，indicating that valid data is available． With an external serial clock，the data can be read using the DOUT／硬Y pin．With $\overline{\mathrm{CS}}$ low，the data／control word informa－tion is placed on the DOUT／$\overline{\operatorname{RDY}}$ pin on the SCLK falling edge and is valid on the SCLK rising edge． The end of a conversion is also indicated by the $\overline{\mathrm{RDY}}$ bit in the status register．When $\overline{\mathrm{CS}}$ is high，the DOUT／硬的 pin is three－stated but the $\overline{\mathrm{RDY}}$ bit remains active．

Pin No.	Mnemonic	Function
16	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers within the ADC, the register selection bits of the communications register identifying the appropriate register.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11

ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers, which are described on the following pages. In the following descriptions, set implies a Logic 1 state and cleared implies a Logic 0 state, unless otherwise stated.

COMMUNICATIONS REGISTER (RS2, RS1, RS0 = 0, 0, 0)

The communications register is an 8-bit write-only register. All communications to the part must start with a write operation to the communications register. The data written to the communications register determines whether the next operation is a read or write operation, and to which register this operation takes place. For read or write operations, once the subsequent read or write operation to the selected register is complete, the interface returns to where it expects a write operation to the communications register. This is the default state of the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 5 outlines the bit designations for the communications register. CR0 through CR7 indicate the bit location, CR denoting the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
$\overline{\operatorname{WEN}}(0)$	$\mathrm{R} / \overline{\mathrm{W}}(0)$	$\operatorname{RS} 2(0)$	$\operatorname{RS} 1(0)$	$\operatorname{RSO}(0)$	$\operatorname{CREAD}(0)$	$0(0)$	$0(0)$

Table 5. Communications Register Bit Designations

Bit Location	Bit Name	Description
CR7	$\overline{\text { WEN }}$	Write Enable Bit. A 0 must be written to this bit so that the write to the communications register actually occurs. If a 1 is the first bit written, the part will not clock on to subsequent bits in the register. It will stay at this bit location until a 0 is written to this bit. Once a 0 is written to the $\overline{W E N}$ bit, the next seven bits will be loaded to the communications register.
CR6	R/W	A 0 in this bit location indicates that the next operation will be a write to a specified register. A 1 in this position indicates that the next operation will be a read from the designated register.
CR5-CR3	RS2-RS0	Register Address Bits. These address bits are used to select which of the ADC's registers are being selected during this serial interface communication. See Table 6.
CR2	CREAD	Continuous Read of the Data Register. When this bit is set to 1 (and the data register is selected), the serial interface is configured so that the data register can be continuously read, i.e., the contents of the data register are placed on the DOUT pin automatically when the SCLK pulses are applied. The communications register does not have to be written to for data reads. To enable continuous read mode, the instruction 01011100 must be written to the communications register. To exit the continuous read mode, the instruction 01011000 must be written to the communications register while the $\overline{\operatorname{RDY}}$ pin is low. While in continuous read mode, the ADC monitors activity on the DIN line so that it can receive the instruction to exit continuous read mode. Additionally, a reset will occur if 32 consecutive 1 s are seen on DIN. Therefore, DIN should be held low in continuous read mode until an instruction is to be written to the device.
CR1-CR0	0	These bits must be programmed to logic 0 for correct operation.

Table 6. Register Selection

RS2	RS1	RS0	Register	Register Size
0	0	0	Communications Register during a Write Operation	8 -Bit
0	0	0	Status Register during a Read Operation	8 -Bit
0	0	1	Mode Register	16 -Bit
0	1	0	Configuration Register	16 -Bit
0	1	1	Data Register	24 -Bit (AD7799)
				16 -bit (AD7798)
1	0	0	ID Register	8 -Bit
1	0	1	IO Register	8 -Bit
1	1	0	Offset Register	24 -Bit (AD7799)
				16 -bit (AD7798)
1	1	1	Full-Scale Register	24 -Bit (AD7799)
				16 -Bit (AD7798)

STATUS REGISTER (RS2, RS1, RS0 = 0, 0, 0; POWER-ON/RESET $=0 \times 88$)

The status register is an 8-bit read-only register. To access the ADC status register, the user must write to the communications register, select the next operation to be a read, and load bits RS2, RS1 and RS0 with 0 . Table 7 outlines the bit designations for the status register. SR0 through SR7 indicate the bit locations, SR denoting the bits are in the status register. SR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
$\overline{\operatorname{RDY}(1) ~}$	$\operatorname{ERR}(0)$	NOREF(0)	$0(0)$	$0 / 1$	$\operatorname{CH} 2(0)$	CH1 (0)	CH0 (0)

Table 7. Status Register Bit Designations

Bit Location	Bit Name	Description
SR7	$\overline{\text { RDY }}$	Ready bit for ADC. Cleared when data is written to the ADC data register. The $\overline{\text { RDY }}$ bit is set automatically after the ADC data register has been read or a period of time before the data register is updated with a new conversion result to indicate to the user not to read the conversion data. It is also set when the part is placed in power-down mode. The end of a conversion is indicated by the DOUT/RDY pin also. This pin can be used as an alternative to the status register for monitoring the ADC for conversion data.
SR6	ERR	ADC Error Bit. This bit is written to at the same time as the $\overline{\text { RDY }}$ bit. Set to indicate that the result written to the ADC data register has been clamped to all 0s or all 1 s . Error sources include overrange, underrange, NOREF Cleared by a write operation to start a conversion.
SR5	NOREF	No Reference Bit. Set to indicate that one or both of the REFIN pins is floating or the applied voltage is below a specified threshold. When set, conversion results are clamped to all ones. Cleared to indicate that a valid reference is applied between REFIN(+) and REFIN(-). The NOREF bit is enabled by setting the REF_DET bit in the Configuration register to 1. The ERR bit is also set if the voltage applied to the reference input is invalid.
SR4	0	This bit is automatically cleared.
SR3	$0 / 1$	This bit is automatically cleared on the AD7798, and is automatically set on the AD7799.
SR2-SR0	CH2-CH0	These bits indicate which channel is being converted by the ADC.

MODE REGISTER (RS2, RS1, RS0 = 0, 0, 1; POWER-ON/RESET = 0x000A)

The mode register is a 16-bit register from which data can be read or to which data can be written. This register is used to configure the Low Side Power Switch, select the mode of the ADC and select the ADC update rate. Table 8 outlines the bit designations for the mode register. MR0 through MR15 indicate the bit locations, MR denoting the bits are in the mode register. MR15 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. Any write to the setup register resets the modulator and filter and sets the $\overline{\mathrm{RDY}}$ bit.

MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
MD2(0)	MD1(0)	MD0(0)	PSW(0)	$0(0)$	$0(0)$	$0(0)$	$0(0)$
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
(0)	(0)	$0(0)$	$0(0)$	FS3(1)	FS2(0)	FS1 (1)	FS0 (0)

Table 8. Mode Register Bit Designations

Bit Location	Bit Name	Description
MR15-MR13	MD2-MD0	Mode Select Bits. These bits select the operational mode of the AD7798/AD7799 (See Table 9).
MR12	PSW	Power Switch Control Bit. Set by user to close the power switch PSW to GND. The power switch can sink up to 20 mA. Cleared by user to open the power switch. When the ADC is placed in power-down mode, the power switch is opened.
MR11-MR4	0	These bits must be programmed with a Logic 0 for correct operation.
MR3-MR0	FS3-FS0	Filter Update Rate Select Bits (see Table 10).

Table 9. Operating Modes

MD2	MD1	MDO	Mode
0	0	0	Continuous Conversion Mode (Default). In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. $\overline{\mathrm{RDY}}$ goes low when a conversion is complete. The user can read these conversions by placing the device in continuous read mode whereby the conversions are automatically placed on the DOUT line when SCLK pulses are applied. Alternatively, the user can instruct the ADC to output the conversion by writing to the communications register. After power-on, or following a write to the Mode, Configuration or IO Registers, a conversion is available after a period $2 / f_{A D C}$ while subsequent conversions are available at a frequency of $f_{A D C}$.
0	0	1	Single Conversion Mode. In single conversion mode, the ADC is placed in power-down mode when conversions are not being performed. When single conversion mode is selected, the ADC powers up and performs a single conversion, which occurs after a period $2 / f_{A D C}$. The conversion result in placed in the data register, $\overline{\mathrm{RDY}}$ goes low, and the ADC returns to power-down mode. The conversion remains in the data register and $\overline{\mathrm{RDY}}$ remains active (low) until the data is read or another conversion is performed.
0	1	0	Idle Mode. In Idle Mode, the ADC Filter an Modulator are held in a reset state although the modulator clocks are still provided
0	1	1	Power-Down Mode. In power down mode, all the AD7798/99 circuitry is powered down including the power switch and burnout currents.
1	0	0	Internal Zero-Scale Calibration. An internal short is automatically connected to the enabled channel. A calibration takes 2 conversion cycles to complete. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	0	1	Internal Full-Scale Calibration. The fullscale input is automatically connected to the selected analog input for this calibration. When the gain equals 1 , a calibration takes 2 conversion cycles to complete. For higher gains, 4 conversion cycles are required for the fullscale calibration. $\overline{\text { RDY }}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale calibration coefficient is placed in the fullscale register of the selected channel. A fullscale calibration is required each time the gain of a channel is changed. The full-scale error of the AD7799/AD7798 is calibrated in the factory at both a gain of 1 and 128. These values are loaded into the fullscale register when the gain is 1 or 128. If a different PGA gain is used, then an Internal Full-Scale Calibration is required to calibrate out the gain error associated with that PGA gain. Note that Internal Fullscale Calibrations cannot be performed at a gain of 128.
1	1	0	System Offset Calibration. User should connect the system zero-scale input to the channel input pins as selected by the CH2-CH0 bits. A system offset calibration takes 2 conversion cycles to complete. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measurded offset calibration coefficient is placed in the offset register of the selected channel.
1	1	1	System Full-Scale Calibration. User should connect the system full-scale input to the channel input pins s selected by the CH2-CH0 bits. A system full-scale calibration takes 2 conversion cycles to complete. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale calibration coefficient is placed in the fullscale register of the selected channel.

Table 10. Update Rates Available

FS3	FS2	FS1	FSO	$\mathrm{f}_{\text {ADC }}(\mathrm{Hz}$)	Tsettle (ms)	Rejection @ $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
0	0	0	0	x	x	
0	0	0	1	500	5	
0	0	1	0	250	8	
0	0	1	1	125	16	
0	1	0	0	62.5	32	
0	1	0	1	50	40	
0	1	1	0	41.6	48	
0	1	1	1	33.3	60	
1	0	0	0	19.6	101	90 dB (60 Hz only)
1	0	0	1	16.6	120	84 dB (50 Hz only)
1	0	1	0	16.6	120	$\mathbf{7 0 ~ d B ~ (5 0 ~ H z ~ a n d ~} 60 \mathrm{~Hz}$)
1	0	1	1	12.5	160	$67 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	0	0	10	200	$69 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	0	1	8.33	240	$73 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	1	0	6.25	320	$74 \mathrm{~dB}(50 \mathrm{~Hz}$ and 60 Hz$)$
1	1	1	1	4.17	480	75 dB @ 50/60 Hz

CONFIGURATION REGISTER (RS2, RS1, RS0 = 0, 1, 0; POWER-ON/RESET = 0x0710)

The configuration register is a 16 -bit register from which data can be read or to which data can be written. This register is used to configure the ADC for unipolar or bipolar mode, enable or disable the buffer, enable or disable the burnout currents, select the gain and select the ana\log input channel. CON0 through CON15 indicate the bit locations, CON denoting the bits are in the configuration register. CON15 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
0	0	BO(0)	U/ $\overline{\mathrm{B}}(0)$	$0(0)$	G2(1)	G1(1)	G0(1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
0	0	REF_DET (0)	BUF (1)	$0(0)$	CH2(0)	CH1(0)	CH0(0)

Table 11. Configuration Register Bit Designations

Bit Location	Bit Name	Description				
CON15-CON14	0	These bits must be programmed with a logic 0 for correct operation.				
CON13	BO	Burnout Current Enable Bit. When this bit is set to 1 by the user, the 100 nA current sources in the signal path are enabled. When $B O=0$, the burnout currents are disabled. The burnout currents can be enabled only when the buffer or \ln-Amp is active.				
CON12	U / \bar{B}	Cleared by the user to enable bipolar coding. Negative full-scale differential input will result in an output code of $0 \times 0000(00)$, zero differential input will result in an output code of $0 \times 8000(00)$, and a positive full-scale differential input will result in an output code of 0xFFFF(FF) for the AD7798(99).				
CON11 CON10-CON8	O ${ }^{\text {G2-G0 }}$	This bit must be programmed with a Logic 0 for correct operation. Gain Select Bits. Written by the user to select the ADC input range as follows				
		G2	G1	G0	Gain	ADC Input Range (2.5V Reference)
		0	0	0	1 (In-Amp not used)	$\pm 2.5 \mathrm{~V}$
		0	0	1	2 (In-Amp not used)	± 1.25 V

Bit Location	Bit Name	Description				
		0	1	0	4	$\pm 625 \mathrm{mV}$
		0	1	1	8	$\pm 312.5 \mathrm{mV}$
		1	0	0	16	$\pm 156.2 \mathrm{mV}$
		1	0	1	32	$\pm 78.125 \mathrm{mV}$
		1	1	0	64	$\pm 39.06 \mathrm{mV}$
		1	1	1	128	$\pm 19.53 \mathrm{mV}$
CON7-CON6 CON5	0 REF DET	These bits must be programmed to a logic 0 for correct operation. Enables the Reference Detect Function.				
		When set, the NOREF bit in the status register indicates when the reference being used by the ADC is not present.				
CON4	BUF	Configures the ADC for buffered or unbuffered mode of operation. If cleared, the ADC operates in unbuffered mode, lowering the power consumption of the device. If set, the ADC operates in buffered mode, allowing the user to place source impedances on the front end without contributing gain errors to the system.				
CON3	0	This bits must be programmed to a logic 0 for correct operation.				
CON2-CON0	$\mathrm{CH} 2-\mathrm{CH} 0$	Channel Select bits.				
		Written by the user to select the active analog input channel to the ADC.				
		CH2	CH1	CH0	Channel	Calibration Pair
		0	0	0	$\operatorname{AIN1}(+)$ - AIN1(-)	0
		0	0	1	AIN2(+)-AIN2(-)	1
		0	1	0	AIN3(+) - AIN3(-)	2
		0	1	1	AIN1(-) - AIN1(-)	0
		1	0	0	Reserved	
		1	0	1	Reserved	
		1	1	0	Reserved	
		1	1	1	VDD Monitor	

DATA REGISTER (RS2, RS1, RS0 = 0, 1, 1; POWER-ON/RESET = 0x0000 (AD7798)/ 0X000000 (AD7799))
The conversion result from the ADC is stored in this data register. This is a read-only register. On completion of a read operation from this register, the $\overline{\mathrm{RDY}} \mathrm{bit} / \mathrm{pin}$ is set.

ID REGISTER (RS2, RS1, RS0 = 1, 0, 0; POWER-ON/RESET = 0xX8 (AD7798)/ 0xX9 (AD7799))

The Identification Number for the AD7798/AD7799 is stored in the ID register. This is a read-only register.

IO REGISTER (RS2, RS1, RSO = 1, 0, 1; POWER-ON/RESET = 0x00)

The I/O register is an 8 -bit register from which data can be read or to which data can be written. IO0 through IO7 indicate the bit locations, IO denoting the bits are in the IO register. Table 12 outline the bit designations for the IO register. IO7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

$\mathbf{I O 7}$	IO6	IO5	IO4	IO3	IO2	IO1	IO0
0	$\operatorname{IOEN}(0)$	IO2DAT (0)	IO1DAT (0)	0	0	0	0

Table 12. I/O register Bit Designations

Bit Location	Bit Name	Description
IO7	0	These bits must be programmed to a logic 0 for correct operation.
IO6	IOEN	Configures the pins AIN3(+)/P1 and AIN3(-)/P2 as analog input pins or digital output pins. When this bit is set, the pins are configured as digital output pins P1 and P2. When this bit is cleared, these pins are configured as analog input pins AIN3(+) and AIN3(-).
IO5-IO4	IO2DAT/IO1DAT	P2/P1 Data.
IO3-IO0	0	These bits must be programmed to a logic 0 for correct operation.

OFFSET REGISTER (RS2, RS1, RS0 = 1, 1, 0; Power-on/Reset = 0x8000 (AD7798)/0x800000 (AD7799))

The offset register holds the offset calibration coefficient for the ADC. The power-on-reset value of the internal zero-scale calibration coefficient register is 8000 hex (AD7798)/800000 hex (AD7799). The AD7798/AD7799 has 3 offset registers. Each of these registers is a 16/24-bit read/write register. However, when writing to the offset-scale registers, the ADC must be placed in power down mode or idle mode. This register is used in conjunction with its associated full-scale register to form a register pair. The power-on-reset value is automatically overwritten if an internal or system zero-scale calibration is initiated by the user.

FULLSCALE Register (RS2, RS1, RS0 = 1, 1, 1; Power-on/Reset = 0x5XXX (AD7798)/0x5XXX000 (AD7799))

The full-scale register holds the full-scale calibration coefficient for the ADC. The AD7798/AD7799 has 3 full-scale registers. Each of these registers is a $16 / 24$-bit read/write register. However, when writing to the full-scale registers, the ADC must be placed in power down mode or idle mode. The full-scale error of the AD7799/AD7798 is calibrated in the factory at both a gain of 1 and 128. Therefore if
the gain is set to 128 , as on power-on, or if the gain is set to 1 , the factory calibrated internal full-scale coefficients are automatically loaded into the full-scale registers of the AD7799/AD7798. Therefore, every device will have different default coefficients. The user can overwrite these values, if required. These coefficients will be automatically overwritten if an internal or system full-scale calibration is initiated by the user. A full-scale calibration should be performed when the gain is changed. When the gain equals 128 , internal full-scale calibrations cannot be performed.

TYPICAL APPLICATION

Figure 12.

[^0]: ${ }^{1}$ Temperature Range $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
 ${ }^{2}$ Specification is not production tested but is supported by characterization data at initial product release.
 ${ }^{3}$ A System calibration will reduce this error to the order of the noise for the programmed gain and update rate.
 ${ }^{4}$ A calibration at any temperature will remove this error.
 ${ }^{5}$ Full-scale error applies to both positive and negative full-scale and applies at the factory calibration conditions (AV VD $=4 \mathrm{~V}$).
 ${ }^{6}$ FS[3:0] are the four bits used in the mode register to select the output word rate.
 ${ }^{7}$ Digital inputs equal to VV $_{D D}$ or GND.

